Python for Science and Technology

Shibu Meher

Materials Research Centre, IISc Bangalore

June 25, 2023

भारतीय विज्ञान संस्थान

Shibu Meher (MRC, IISc)

Python for Science and Technology

June 25, 2023

Shibu Meher (MRC, IISc)

∃ >

Computer

 A computer is a digital electronic device that can be programmed to carry out sequences of arithmetic or logical operations automatically. (Wikipedia)

Computer

 A computer is a digital electronic device that can be programmed to carry out sequences of arithmetic or logical operations automatically. (Wikipedia)

• **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.
 - Operating System/System Software: Microsoft Windows, Linux, Unix, DOS etc.

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.
 - Operating System/System Software: Microsoft Windows, Linux, Unix, DOS etc.
 - Data: Protocol (HTTP), File format (HTML, XML, JPEG)

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.
 - Operating System/System Software: Microsoft Windows, Linux, Unix, DOS etc.
 - Data: Protocol (HTTP), File format (HTML, XML, JPEG)
 - Libraries: Multimedia (OpenGL), Programming Libraries (C standard library, Standard Template Library)

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.
 - Operating System/System Software: Microsoft Windows, Linux, Unix, DOS etc.
 - Data: Protocol (HTTP), File format (HTML, XML, JPEG)
 - Libraries: Multimedia (OpenGL), Programming Libraries (C standard library, Standard Template Library)
 - User Interface: Graphical User Interface (Microsoft Windows), Text based interface (Command Line Interface)

- **Hardware:** Physically tangible parts of computers, e.g. circuits, RAM, CPU, input devices, output devices, storage devices
- **Software:** Physically not tangible parts of computers, e.g. programs, data, protocols etc.
 - Operating System/System Software: Microsoft Windows, Linux, Unix, DOS etc.
 - Data: Protocol (HTTP), File format (HTML, XML, JPEG)
 - Libraries: Multimedia (OpenGL), Programming Libraries (C standard library, Standard Template Library)
 - User Interface: Graphical User Interface (Microsoft Windows), Text based interface (Command Line Interface)
 - Application Software: Office suite, Compiler, Text Editor etc.

Computer Programming

• Computer only understands 0s and 1s.

3 N 3

Computer Programming

• Computer only understands 0s and 1s.

Computer Language and its Types

∃ >

Computer Programming

• Computer only understands 0s and 1s.

Computer Language and its Types

• **10 Most Popular Language in 2022:** Python, Java, JavaScript, C++, C, C, TypeScript, PHP, Perl, Ruby

Shibu Meher (MRC, IISc)

• **Python** is a very popular general-purpose interpreted, <u>interactive</u>, object-oriented, and high-level programming language.

.∋...>

- **Python** is a very popular general-purpose interpreted, <u>interactive</u>, object-oriented, and high-level programming language.
- Why Python?
 - Easy to use and learn
 - Mature and Supportive Python Communities
 - Hundreds of Libraries and Framework
 - Big Data, Machine Learning, Cloud Computing, Web Development (Server Side), Software Development, System Scripting, Scientific Computing, etc
 - Good for rapid prototyping as well as production-ready software development

- **Python** is a very popular general-purpose interpreted, <u>interactive</u>, object-oriented, and high-level programming language.
- Why Python?
 - Easy to use and learn
 - Mature and Supportive Python Communities
 - Hundreds of Libraries and Framework
 - Big Data, Machine Learning, Cloud Computing, Web Development (Server Side), Software Development, System Scripting, Scientific Computing, etc
 - Good for rapid prototyping as well as production-ready software development

Disadvantages of Python:

- Speed Limitations (Use Cython)
- Weak in Mobile Computing

A Simple Code in C Vs Python

C (main.c)

```
#include <stdio.h>
int main() {
    int number1, number2, sum;
    printf("Enter two integers: ");
    scanf("%d %d", &number1, &number2);
    // calculating sum
    sum = number1 + number2;
    printf("%d + %d = %d", number1, number2, sum);
    return 0;
}
```

A Simple Code in C Vs Python

C (main.c)

```
#include <stdio.h>
int main() {
    int number1, number2, sum;
    printf("Enter two integers: ");
    scanf("%d %d", %number1, %number2);
    // calculating sum
    sum = number1 + number2;
    printf("%d + %d = %d", number1, number2, sum);
    return 0;
}
```

Python (main.py)

```
number1, number2 = input("Enter two integers: ").split()
# calculating sum
sum = int(number1) + int(number2)
print('{0} + {1} = {2}'.format(number1, number2, sum))
```

イロト 不得 トイヨト イヨト

э

Applications in Science

• Physics:

• Computational solid state physics, Computational mechanics, Computational electrodynamics, Computational astrophysics, Computational biophysics etc.

• Computational solid state physics, Computational mechanics, Computational electrodynamics, Computational astrophysics, Computational biophysics etc.

• Chemistry:

• Computational chemistry (Mainly to solve quantum many body problem)

• Computational solid state physics, Computational mechanics, Computational electrodynamics, Computational astrophysics, Computational biophysics etc.

• Chemistry:

• Computational chemistry (Mainly to solve quantum many body problem)

Mathematics:

• Numerical Analysis, Probability, statistics, integration, derivatives etc.

• Computational solid state physics, Computational mechanics, Computational electrodynamics, Computational astrophysics, Computational biophysics etc.

• Chemistry:

• Computational chemistry (Mainly to solve quantum many body problem)

Mathematics:

• Numerical Analysis, Probability, statistics, integration, derivatives etc.

Biology:

• Computational biology (includes bioinformatics, Computational Neuroscience, Computational Pharmacology)

• Computational solid state physics, Computational mechanics, Computational electrodynamics, Computational astrophysics, Computational biophysics etc.

• Chemistry:

• Computational chemistry (Mainly to solve quantum many body problem)

Mathematics:

• Numerical Analysis, Probability, statistics, integration, derivatives etc.

Biology:

- Computational biology (includes bioinformatics, Computational Neuroscience, Computational Pharmacology)
- In all the above cases there is already available python packages or python is used to efficiently do the calculations using other software and analysing the data after calculations.

• NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python
- SymPy: library for symbolic computation, offering features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics, and quantum physics

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python
- SymPy: library for symbolic computation, offering features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics, and quantum physics
- Astropy: collection of packages designed for use in astronomy

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python
- SymPy: library for symbolic computation, offering features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics, and quantum physics
- Astropy: collection of packages designed for use in astronomy
- Biopython: Python tools for computational biology and bioinformatic

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python
- SymPy: library for symbolic computation, offering features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics, and quantum physics
- Astropy: collection of packages designed for use in astronomy
- Biopython: Python tools for computational biology and bioinformatic
- Bokey: quickly and easily create interactive plots, dashboards, and data applications

- NumPy: the fundamental package for scientific computing with Python, adding support for large, multidimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- SciPy: Fundamental algorithms for scientific computing in Python
- SymPy: library for symbolic computation, offering features ranging from basic symbolic arithmetic to calculus, algebra, discrete mathematics, and quantum physics
- Astropy: collection of packages designed for use in astronomy
- Biopython: Python tools for computational biology and bioinformatic
- Bokey: quickly and easily create interactive plots, dashboards, and data applications
- 40 Most Popular Python Scientific Libraries (https://www.stxnext.com/blog/most-popular-python-scientificlibraries/)

• Artificial Intelligence and Machine Learning (Keras, TensorFlow, Sci-kit learn, PyTorch, Caffee, Seaborn, NumPy, Pandas, Matplotlib)

- Artificial Intelligence and Machine Learning (Keras, TensorFlow, Sci-kit learn, PyTorch, Caffee, Seaborn, NumPy, Pandas, Matplotlib)
- Automation and Robotics (Dart, PyDy, pyro, PyRobot)
- Image Processing (OpenCV, Blender, PIL, Houdini)

- Artificial Intelligence and Machine Learning (Keras, TensorFlow, Sci-kit learn, PyTorch, Caffee, Seaborn, NumPy, Pandas, Matplotlib)
- Automation and Robotics (Dart, PyDy, pyro, PyRobot)
- Image Processing (OpenCV, Blender, PIL, Houdini)
- Web Scrapping (Selenium, Scrapy)
- Desktop GUI (PyQt, PyGtk, Kivy, Tkinter, WxPython, PyGUI, and PySide)

- Artificial Intelligence and Machine Learning (Keras, TensorFlow, Sci-kit learn, PyTorch, Caffee, Seaborn, NumPy, Pandas, Matplotlib)
- Automation and Robotics (Dart, PyDy, pyro, PyRobot)
- Image Processing (OpenCV, Blender, PIL, Houdini)
- Web Scrapping (Selenium, Scrapy)
- Desktop GUI (PyQt, PyGtk, Kivy, Tkinter, WxPython, PyGUI, and PySide)
- Game Development (PyGame, PySoy)
- Web Development (Django, Pyramid, Flask, and Bottle)

Basics of Image Processing

Concept of pixel

PHOTO: PHOTOCO/GUT TY MANJES NUCLE TECHTORISET ALL RESIDENTS

Pixels

June 25, 2023

< ∃⇒

э

Demonstration using Google Colab: Click here for notebook

∃ >